
YEAH Hours
A6
Data Sagas

Let’s take a second…

•Congrats, you’re past the halfway point in the quarter!
• Take a second to pat yourself on the back. This is hard
stuff, and you’re doing great ☺

Stack Efron, CS106B alum and LIFO enthusiast,
congratulating on a job well done so far!

Assignment logistics

● The assignment is due on Friday February 26th at class time. You’re welcome
to work in pairs.

● Try and start early! This one is rather different than the other assignments you’ve
done so far -- you can bugs end up being much more subtle!

The Breakdown:
1. Array exploration: A debugging warmup where you’ll learn all about arrays in C++

and possibly memory errors!

2. HeapPQ: A 106B classic, where you’ll be implementing a priority min-queue using a

binary heap!

3. Streaming Top-K: Using your new priority queue, you can do some pretty cool things!

Part 1: Array Exploration
● We want this part to be pretty straightforward, but also a great introduction to arrays

and debugging for the next part of the assignment!

● Go into ExploreArrays.cpp and set a breakpoint at the top of the file.

○ From there, follow the instructions in ShortAnswers.txt and you should be

good to go!

Let’s discuss: what’s a priority queue?
• A priority queue, or a pq as lazy computer scientists like
to say, is a queue-like data structure (think enqueue()
and dequeue()), but it has a cool extra feature!

• All elements in a pq are assigned a priority upon
enqueue(), and that priority determines the order that
they will be dequeue()’d in!
• For this assignment, your pq will store DataPoint
structs, that have embedded priorities
• A pq can either prioritize high priorities or low
priorities, meaning that the element dequeue()’d will
always be the one with the highest or lowest priority.
• For this assignment, you’ll be dealing with min PQ, meaning
that you’ll be concerned dequeue’ing the smallest priority first ☺

Dequeue

Is this a max pq or a
min pq? What
element will be
dequeue()’d after 9?

Part 2: Heap PQ

•In this second part, you’ll be implementing a full priority queue using a binary min heap!
• As per this assignment, we mean that the “highest priority” element is the element with the smallest value.
• In order to keep that property in your queue, you will be using a min heap which is a cool new data structure!

•Here’s the entire PQ interface, most of which you’ll implement:

Part 2: Heap PQ

•In this second part, you’ll be implementing a full priority queue using a binary min heap!
• As per this assignment, we mean that the “highest priority” element is the element with the smallest value.
• In order to keep that property in your queue, you will be using a min heap which is a cool new data structure!

•Here’s the entire PQ interface, most of which you’ll implement:

Your underlying data container should be
a C++ array! This means that you’ll be
responsible for allocating, deleting, and
resizing your PQ.

Many of these tasks, like size() and
peek() should be very straightforward!

printDebugInfo() is a helper method that
you can write to print the contents of
your PQ at any time!

Review: Binary Heap

● Before starting this assignment, we highly recommend reading the handout specification about binary
heaps multiple times.
○ Without a good understanding of how these structures work, you will not be able to implement

the priority queue!
○ Luckily, the binary heap isn’t too complex!

Review: Binary Heap

● One way to think about a binary heap is via a tree-hierarchy diagram like so:

Review: Binary Heap

● One way to think about a binary heap is via a tree-hierarchy diagram like so:

In a binary heap, the only element
you really care about is the very top
one! What’s special about it?

Review: Binary Heap

● One way to think about a binary heap is via a tree-hierarchy diagram like so:

Binary min-heaps have a special
property where the topmost
element is always the smallest!

Review: Binary Heap

● One way to think about a binary heap is via a tree-hierarchy diagram like so:

To preserve this rule, adding and
removing from a binary heap
follows some special rules that will
always preserve this order. The
adding algorithm is informally called
bubble up, and the removal
algorithm is called bubble down.

Review: Binary Heap

● Let’s look at another binary heap:

When adding/removing, it’s easier
to think about the process
programmatically when these
elements exist in an array!

Review: Binary Heap

● Let’s look at another binary heap:
As you can see, the labels 1-7 became
indices in an array! Notice that our
array is 1-indexed! This will make our
math easier in the future.

Review: Binary Heap

● Let’s look at another binary heap:
Notice that the element with the
smallest weight is at the front of our
array (index 1)! That’ll make our life
easier when peeking / dequeueing

Review: Binary Heap

● Let’s discuss how to add / remove from a binary heap in array-form (like you’ll do in this assignment!)

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!

For this demo, I’ll use integers
to represent DataPoint weights
for clarity.pq.enqueue(3);

5 7 10

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!

pq.enqueue(3);

5 7 10

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!

pq.enqueue(3);

5 7 10 3

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent!

bubbleUp()

5 7 10 3

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent!

bubbleUp()

5

Parent at
index 2

7

1 2 3 4 5

10 3

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent!

bubbleUp()

5

Parent at
index 2

1 2 3 4 5

7 10 3

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent!

bubbleUp()

5

Parent at
index 2

1 2 3 4 5

3 10 7

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!

bubbleUp()
Index is now 2

5 3 10 7

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

5 3 10 7

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

5 3 10 7

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

5 3 10 7

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

5 3 10 7

^ this looks like a
face, doesn’t it? :p

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

3 5 10 7

^ this looks like a
face, doesn’t it? :p

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

Are we
done?

1 2 3 4 5

3 5 10 7

Part 2: Heap PQ

•Let’s talk about enqueue()!
• To enqueue an element, first add it to the end of your pqueue!
• Next, bubble the element up (if a parent exists!) Compare it with its parent at index i/2. Swap if
your element is less than its parent! Be sure to update your element's current index!
• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap (index 1)!

Done!

1 2 3 4 5

3 5 10 7

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite index 1!)

3 5 10 7

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

3 5 10 7

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

7 5 10 3

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

pq.size() = 3
7 5 10 3

Question: what is
the PQ's internal
capacity?

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

7 5 10 3

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

Check your understanding:
why does swapping with
the smaller child matter?

1 2 3 4 5

7 5 10 3

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

i*2 i*2+1

7 5 10 3

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

i*2 i*2+1

7 5 10 3

Our friend the face is back!

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

5 7 10 3

Our friend the face is back!

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children. Remember to update your index if you swap!

• Repeat this process until you are smaller than both of your children, or you have no children left!

5 7 10 3

1 2 3 4 5

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

• Repeat this process until you are smaller than both of your children, or you have no children left!

Are we
done?

1 2 3 4 5

5 7 10 3

Part 2: Heap PQ

•Let’s talk about dequeue()!
• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)
• Next, you want to bubble down the root element to its correct place. Compare the root element with

its children, who live at indices (2 * i + 1) and (2 * i), and swap your element with the smaller of the
children.

• Repeat this process until you are smaller than both of your children, or you have no children left!

Done!

1 2 3 4 5

5 7 10 3

Part 2: Heap PQ

Helpful hints:

● Like the other parts of this assignment, you'll be using the DataPoint struct to represent
elements.

● Read thru HeapPQueue.h before writing any code! The .h file will tell you exactly what is expected
of each method you write!

● You will need to resize your array if you try and enqueue() and element that you don’t have room
for!

● Once you think your enqueue and dequeue functions work, run the provided time tests to verify that
they run in O(nlogn) (i.e. enqueueing and/or dequeueing n elements should take log(n) time per
element, where n is roughly the size of the queue).

Part 2: Heap PQ

Helpful hints:

•I recommend writing a swap() method and explicit bubbleUp() and bubbleDown() helper functions.

•dequeue() is a little more heap-y than enqueue(), so I’d recommend doing enqueue() first to

get your feet wet!

•Don’t worry about ties - swapping identical elements effectively does nothing.
• Verify to yourself - why is this true?

•The printDebugInfo() method can be a life-saver, but it isn’t implemented. You'll have to write them

yourself!

Part 2: Heap PQ

Helpful hints:

•Verify that the bubble functions work individually before trying to run robustness tests! It

can be very difficult to locate bugs if they have multiple potential sources.

•Recall the debugging work you did in the first parts of this assignment to help you here - we

strongly encourage that you use the debugger and/or the debug helper member functions to

hammer out your bugs.
• Look to the warmups if you think you're getting weird memory errors!

Part 2: Heap PQ

One particular edge case I want to point out:

•In dequeue(), be cognizant of the fact that it’s possible to only have one child within the

bounds of the array!
• In this case, the second child should be ignored. If you don’t check for this, your bubble down will
read in a potentially bogus value that can cause wacky behavior in your program.

Questions about Part 2?

Part 3:Top K
•In this part of the assignment, you will be a client,
or a user, of the pq class.

•With a pq, you can do some really powerful
things! The code to the right sorts a vector using

just enqueue! and dequeue()! Take a second to

see why this works.

A PQSortedArray is just another kind of PQ (you
won’t need to worry about it). Just assume it’s a
priority queue that works just like your PQHeap!

Part 3:Top K

•You’ll be implementing the function Vector<DataPoint> topK(istream& stream, int k);

Part 3:Top K

•You’ll be implementing the function Vector<DataPoint> topK(istream& stream, int k);

•An istream is a special abstraction that acts like a massive data structure. Streams allow
you to move around massive amounts of memory because they don’t need to hold the data in your
computer’s memory all at once - as you read data from the stream, the stream can
read more data from its source - a file on disk for example!

• You won’t need to worry about the inner-workings of streams in this class, but it’s important to
know that streams can store huge amounts of data.

Part 3:Top K

•You’ll be implementing the function Vector<DataPoint> topK(istream& stream, int k);

•In the above function, your job is harness the power of the PQ in order to return
a Vector<DataPoint> of the largest k elements in the stream.

•You must do so in O(k) space, meaning you can only store k elements in your priority
queue at any given time.

Part 3:Top K
•You will need to return the k largest elements in a Vector<DataPoint> sorted in largest to
smallest priority order.

• Note that it’s very easy to get this backwards! pq.dequeue() returns the SMALLEST element in the
queue, which should go at the END of the vector.
• The vector .reverse() method might be helpful here, but it's an O(N) operation. Can you do better?

•This function will need to run in O(nlogk) time for n elements in the stream and k top elements. Given that
your PQ add/removal functions run in O(logk) for a size of k, what might this imply?

•It’s worth noting that you can only view an element from the input stream once. You should never need to
revisit it.

Part 3:Top K
Tips / Tricks

•Here’s how you can loop through every dataPoint in
the stream ->

• Because you can only store k elements at a time,
how can you use the priority queue to your
advantage?

• When your pq has k elements in it, what’s special about
the element returned by pq.peek()?

• If the stream contains fewer than k elements, simply
return those elements in the Vector as you would if
there were more than k elements in the stream.

Questions about Top K?

Part 4: Extra Demos!
•You don't have to do any extra coding here! Once your program is done, try running the provided demos to

view representations of large real-world data sets that use your

new data structure!

•It's an amazing graphical demo, so be sure to check it out after you've finished the

assignment. It won't work before ;)

You did it!

Best of luck on this assignment!

Think about what you've just made - you can now create the data structures that we taught

you about in the beginning of the class. Go you!

